p-Laplacian problems with jumping nonlinearities

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p-LAPLACIAN PROBLEMS WITH JUMPING NONLINEARITIES

We consider the p-Laplacian boundary value problem −(φp(u(x)) = f(x, u(x), u′(x)), a.e. x ∈ (0, 1), (1) c00u(0) + c01u ′(0) = 0, c10u(1) + c11u ′(1) = 0, (2) where p > 1 is a fixed number, φp(s) = |s|p−2s, s ∈ R, and for each j = 0, 1, |cj0|+ |cj1| > 0. The function f : [0, 1]× R2 → R is a Carathéodory function satisfying, for (x, s, t) ∈ [0, 1]× R2, ψ±(x)φp(s)− E(x, s, t) ≤ f(x, s, t) ≤ Ψ±(x)φ...

متن کامل

Nonresonance Conditions for Generalised Φ-laplacian Problems with Jumping Nonlinearities

We consider the boundary value problem −ψ(x, u(x), u′(x))′ = f(x, u(x), u′(x)), a.e. x ∈ (0, 1), (1) c00u(0) = c01u ′(0), c10u(1) = c11u ′(1), (2) where |cj0| + |cj1| > 0, for each j = 0, 1, and ψ, f : [0, 1] × R2 → R are Carathéodory functions, with suitable additional properties. The differential operator generated by the left-hand side of (1), together with the boundary conditions (2), is a ...

متن کامل

EIGENVALUE PROBLEMS WITH p-LAPLACIAN OPERATORS

In this article, we study eigenvalue problems with the p-Laplacian operator: −(|y′|p−2y′)′ = (p− 1)(λρ(x)− q(x))|y|p−2y on (0, πp), where p > 1 and πp ≡ 2π/(p sin(π/p)). We show that if ρ ≡ 1 and q is singlewell with transition point a = πp/2, then the second Neumann eigenvalue is greater than or equal to the first Dirichlet eigenvalue; the equality holds if and only if q is constant. The same ...

متن کامل

p-Laplacian problems with critical Sobolev exponent

We use variational methods to study the asymptotic behavior of solutions of p-Laplacian problems with nearly subcritical nonlinearity in general, possibly non-smooth, bounded domains.

متن کامل

MULTIPLE SOLUTIONS FOR A CLASS OF p(x)-LAPLACIAN PROBLEMS INVOLVING CONCAVE-CONVEX NONLINEARITIES

Since A. Ambrosetti and P.H. Rabinowitz proposed the mountain pass theorem in 1973 (see [1]), critical point theory has become one of the main tools for finding solutions to elliptic problems of variational type. Especially, elliptic problem (1.2) has been intensively studied for many years. One of the very important hypotheses usually imposed on the nonlinearities is the following Ambrosetti-R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2006

ISSN: 0022-0396

DOI: 10.1016/j.jde.2005.08.016